Author:
de Oliveira Juliana L,Oyama Lila M,Hachul Ana Cláudia L,Biz Carolina,Ribeiro Eliane B,Oller do Nascimento Claudia M,Pisani Luciana P
Abstract
Abstract
Background
Although lipids transfer through placenta is very limited, modification in dietary fatty acids can lead to implications in fetal and postnatal development. Trans fatty acid (TFA) intake during gestation and lactation have been reported to promote dyslipidemia and increase in pro- inflammatory adipokines in offspring. The aim of this study was to evaluate whether the alterations on pro-inflammatory cytokines and dyslipidemia observed previously in 21-d-old offspring of rats fed a diet containing hydrogenated vegetable fat during gestation and lactation were related to alterations in TLR-4, TRAF-6 and adipo-R1 receptor in white adipose tissue and muscle. On the first day of gestation, rats were randomly divided into two groups: (C) received a control diet, and (T) received a diet enriched with hydrogenated vegetable fat, rich in trans fatty acids. The diets were maintained throughout gestation and lactation. Each mother was given eight male pups. On the 21st day of life the offspring were killed. Blood, soleus and extensor digital longus (EDL) muscles, and retroperitoneal (RET) white adipose tissue were collected.
Results
21-d-old of T rats had higher serum triacylglycerols, cholesterol, and insulin. The Adipo R1 protein expression was lower in RET and higher in EDL of T group than C. TLR-4 protein content in all studied tissues were similar between groups, the same was verified in TRAF-6 protein expression in soleus and EDL. However, TRAF-6 protein expression in RET was higher in T than C.
Conclusion
These results demonstrated that maternal ingestion of hydrogenated vegetable fat rich in TFAs during gestation and lactation decrease in Adipo R1 protein expression and increase in TRAF-6 protein expression in retroperitoneal adipose tissue, but not in skeletal muscle, which could contributed for hyperinsulinemia and dyslipidemia observed in their 21-d-old offspring.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference52 articles.
1. Godfrey KM, Barker DJ: Fetal programming and adult health. Public Health Nutr. 2001, 4: 611-624. 10.1079/PHN2001145
2. Morley R, Dwyer T: Fetal origins of adult disease?. Clin Exp Pharmacol Physiol. 2001, 28: 962-6. 10.1046/j.1440-1681.2001.03557.x
3. Gillman MW: Epidemiological challenges in studying the fetal origins of adult chronic disease. Int F Epidemiol. 2002, 31: 294-299. 10.1093/ije/31.2.294.
4. Godfrey KM, Forrester T, Barker DJ, Jackson AA, Landman JP, Hall JS, Cox V, Osmond C: Maternal nutritional status in pregnancy and blood pressure in childhood. Br J Obstet Gynaecol. 1994, 101 (5): 398-403. 10.1111/j.1471-0528.1994.tb11911.x
5. Godfrey KM, Breier BH, Cooper C: Constraint of the materno-placental supply of nutrients: Causes and consequences. Fetal Programming. Edited by: O'Brien PMS, Wheeler T, Barker DJP. 1999, 283-298. London, UK: Royal College of Obstetricians and Gynaecologists
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献