Regulations of the key mediators in inflammation and atherosclerosis by Aspirin in human macrophages

Author:

Lu Li,Liu Hong,Peng Jiahe,Gan Lin,Shen Lili,Zhang Qian,Li Liangpeng,Zhang Li,Su Chang,Jiang Yu

Abstract

Abstract Although its role to prevent secondary cardiovascular complications has been well established, how acetyl salicylic acid (ASA, aspirin) regulates certain key molecules in the atherogenesis is still not known. Considering the role of matrix metalloproteinase-9 (MMP-9) to destabilize the atherosclerotic plaques, the roles of the scavenger receptor class BI (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) to promote cholesterol efflux in the foam cells at the plaques, and the role of NF-κB in the overall inflammation related to the atherosclerosis, we addressed whether these molecules are all related to a common mechanism that may be regulated by acetyl salicylic acid. We investigated the effect of ASA to regulate the expressions and activities of these molecules in THP-1 macrophages. Our results showed that ASA inhibited MMP-9 mRNA expression, and caused the decrease in the MMP-9 activities from the cell culture supernatants. In addition, it inhibited the nuclear translocation of NF-κB p65 subunit, thus the activity of this inflammatory molecule. On the contrary, acetyl salicylic acid induced the expressions of ABCA1 and SR-BI, two molecules known to reduce the progression of atherosclerosis, at both mRNA and protein levels. It also stimulated the cholesterol efflux out of macrophages. These data suggest that acetyl salicylic acid may alleviate symptoms of atherosclerosis by two potential mechanisms: maintaining the plaque stability via inhibiting activities of inflammatory molecules MMP-9 and NF-κB, and increasing the cholesterol efflux through inducing expressions of ABCA1 and SR-BI.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3