Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats

Author:

Zhao Jiexiu,Tian Ye,Xu Jincheng,Liu Dongsen,Wang Xiaofang,Zhao Binxiu

Abstract

Abstract Background Endurance exercise is known to promote a substantial effect on the energy balance in rats and humans. However, little is known about the exact mechanisms for the appetite-suppressive effects of endurance exercise. We hypothesized that endurance training might activate signaling cascades in the hypothalamus known to be involved in leptin signaling. Methods 16 male Wistar rats were randomly assigned to two groups: sedentary (n = 8) and exercise groups (n = 8). Animals in the exercise group started treadmill running at 30 m/min, 0% grade, for 1 min/bout. Running time was gradually increased by 2 min/bout every day. The training plan was one bout per day during initial two weeks, and two bouts per day during 3rd-9th week. At the end of nine-week experiment, blood was analyzed for low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), interleukin (IL)-6, and leptin in both groups. Activations of janus kinase 2-signaling transducer and activator of transcription 3 (JAK2-STAT3), protein kinase B (Akt), extracellular regulated kninase (ERKs), and suppressor of cytokine signaling 3 (SOCS3) in hypothalamus were measured in the end of nine weeks of exercise protocol. Results Nine-week endurance exercise induced lower concentrations of LDL-C, TG, TC, FFA, and leptin in rats (P < 0.05 or P < 0.01). Nine-week endurance exercise significantly increased the circulating IL-6 concentration compared with sedentary group (239.6 ± 37.2 pg/ml vs. 151.8 ± 31.5 pg/ml, P < 0.01). Exercise rats showed significant increases in JAK2, STAT3, Akt, ERKs, and SOCS3 phosphorylations compared with sedentary rats (P < 0.01). Conclusion The data suggest that endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3