Author:
Moser Ann B,Steinberg Steven J,Watkins Paul A,Moser Hugo W,Ramaswamy Krishna,Siegmund Kimberly D,Lee D Rick,Ely John J,Ryder Oliver A,Hacia Joseph G
Abstract
Abstract
Background
Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological, and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals with Alzheimer disease.
Results
In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1 moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues.
Conclusion
We propose that the observed differences in human and great ape RBC plasmalogens are primarily caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence organ functions and processes ranging from cognition to reproduction to aging.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference141 articles.
1. Kawamura R: Neue Beitrage zur Morphologie und Physiologie der Cholinesterinsteatos. 1927, 267-Jena, Germany: Gustav Fischer,
2. Fox H: Artiosclerosis in lower mammals and birds: Its relation to the disease in man. Artiosclerosis. Edited by: Cowdry EV. 1933, 153-193. New York: The Macmillan Co,
3. Hueper WC: Experimental Studies in Cardiovascular Pathology: XIV. Experimental Atheromatosis in Macacus rhesus monkeys. Am J Pathol. 1946, 22 (6): 1287-1291.
4. Peeters H, Blaton V: Comparison of lipid and lipoprotein patterns in primates. Acta Zool Pathol Antverp. 1969, 48: 221-231.
5. Gresham GA, Howard AN: Vascular lesions in primates. Ann N Y Acad Sci. 1965, 127 (1): 694-701.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献