Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver

Author:

Bighetti Eliete JB,Patrício Patrícia R,Casquero Andrea C,Berti Jairo A,Oliveira Helena CF

Abstract

Abstract Background CETP is a plasma protein that modulates atherosclerosis risk through its HDL-cholesterol reducing action. The aim of this work was to examine the effect of the PPARα agonist, ciprofibrate, on the CETP gene expression, in the presence and absence of apolipoprotein (apo) CIII induced hypertriglyceridemia, and its impact on the HDL metabolism. Results Mice expressing apo CIII and/or CETP and non-transgenic littermates (CIII, CIII/CETP, CETP, non-Tg) were treated with ciprofibrate during 3 weeks. Drug treatment reduced plasma triglycerides (30-43%) and non-esterified fatty acids (19-47%) levels. Cholesterol (chol) distribution in plasma lipoprotein responses to ciprofibrate treatment was dependent on the genotypes. Treated CIII expressing mice presented elevation in VLDL-chol and reduction in HDL-chol. Treated CETP expressing mice responded with reduction in LDL-chol whereas in non-Tg mice the LDL-chol increased. In addition, ciprofibrate increased plasma post heparin lipoprotein lipase activity (1.3-2.1 fold) in all groups but hepatic lipase activity decreased in treated CETP and non-Tg mice. Plasma CETP activity and liver CETP mRNA levels were significantly increased in treated CIII/CETP and CETP mice (30-100%). Kinetic studies with 3H-cholesteryl ether (CEt) labelled HDL showed a 50% reduction in the 3H-CEt found in the LDL fraction in ciprofibrate treated compared to non-treated CETP mice. This means that 3H-CEt transferred from HDL to LDL was more efficiently removed from the plasma in the fibrate treated mice. Accordingly, the amount of 3H-CEt recovered in the liver 6 hours after HDL injection was increased by 35%. Conclusion Together these data showed that the PPARα agonist ciprofibrate stimulates CETP gene expression and changes the cholesterol flow through the reverse cholesterol transport, increasing plasma cholesterol removal through LDL.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3