Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil

Author:

Ho Margaret T.,Li Michelle S. M.,McDowell Tim,MacDonald Jacqueline,Yuan Ze-ChunORCID

Abstract

Abstract Background With the high demand for diesel across the world, environmental decontamination from its improper usage, storage and accidental spills becomes necessary. One highly environmentally friendly and cost-effective decontamination method is to utilize diesel-degrading microbes as a means for bioremediation. Here, we present a newly isolated and identified strain of Acinetobacter calcoaceticus (‘CA16’) as a candidate for the bioremediation of diesel-contaminated areas. Results Acinetobacter calcoaceticus CA16 was able to survive and grow in minimal medium with diesel as the only source of carbon. We determined through metabolomics that A. calcoaceticus CA16 appears to be efficient at diesel degradation. Specifically, CA16 is able to degrade 82 to 92% of aliphatic alkane hydrocarbons (CnHn + 2; where n = 12–18) in 28 days. Several diesel-degrading genes (such as alkM and xcpR) that are present in other microbes were also found to be activated in CA16. Conclusions The results presented here suggest that Acinetobacter strain CA16 has good potential in the bioremediation of diesel-polluted environments.

Funder

Agriculture and Agri-Food Canada

Natural Sciences and Engineering Research Council of Canada

Mitacs

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Reference70 articles.

1. Balseiro-Romero M, Monterroso C. Phytotoxicity of fuel to crop plants: influence of soil properties, fuel type, and plant tolerance. Toxicol Environ Chem. 2015;8:1–12.

2. Luhach J, Chaudhry S. Effect of diesel fuel contamination on seed germination and growth of four agricultural crops. Univers J Environ Res Technol. 2012;4:311–7.

3. Amund OO, Nwokoye N. Hydrocarbon degradation potentials of yeast isolates from a polluted lagoon. J Sci Res Dev. 1993;1:65–9.

4. Lal B, Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol. 1996;4:355–62.

5. Gupta S, Pathak B, Fulekar MH. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev Environ Sci Biotechnol. 2014;2:241–69.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3