Purification and characterization of soluble recombinant Crimean-Congo hemorrhagic fever virus glycoprotein Gc expressed in mammalian 293F cells

Author:

Makoah Nigel Aminake,Litabe Matefo Millicent,Simo Fredy Brice Nemg,Maboho Katlego Keith,Burt Felicity Jane

Abstract

Abstract Background Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease that presents with severe hemorrhagic manifestations and is associated with significant fatality rates. The causative agent, Crimean-Congo Hemorrhagic Fever Virus (CCHFV), is a high-priority pathogen identified by the World Health Organization with no approved vaccine or specific treatment available. In addition, there is a critical need for enhanced diagnostic tools to improve public health awareness, prevention measures, and disease control strategies. Methods We designed plasmids to enable the purification of soluble CCHFV glycoprotein Gc expressed in mammalian 293 F cells, followed by purification using affinity and size exclusion chromatography. The purified antigen was analyzed by SDS-PAGE and Western blotting to confirm its reactivity to antibodies from CCHF survivors. Additionally, an in-house indirect ELISA was developed using the purified Gc as a coating antigen. Results The optimized expression system successfully produced soluble and pure Gc antigen after affinity chromatography. The protein showed specific reactivity with CCHFV-positive serum antibodies in Western blot analysis. The indirect ELISA assay demonstrated high efficacy in distinguishing between CCHFV-positive and -negative serum samples, indicating its potential as a valuable diagnostic tool. Size exclusion chromatography further confirmed the presence of aggregates in our protein preparation. Conclusions The purified Gc antigen shows promise for developing direct diagnostic assays for CCHFV. The antigen’s suitability for subunit vaccine development and its application as bait for monoclonal antibody isolation from survivors could be investigated further. This work lays the foundation for future research into the development of rapid diagnostic tests for field deployment.

Funder

South African Medical Research Council

National Research Foundation Thuthuka

South African Research Chairs initiative of the Department of Science and Technology and the National Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3