Abstract
Abstract
Background
Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors (GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g., cyclic adenosine 3′,5′-monophosphate (cAMP). Specific and efficacious genetically encoded biosensors have been developed to monitor cAMP fluctuations with high spatial and temporal resolution in living cells or tissue. A well characterized biosensor for cAMP is the Förster resonance energy transfer (FRET)-based Epac1-camps protein. Pharmacological characterization of newly developed ligands acting at GPCRs often includes numerical quantification of the second messenger amount that was produced.
Results
To quantify cellular cAMP concentrations, we bacterially over-expressed and purified Epac1-camps and applied the purified protein in a cell-free detection assay for cAMP in a multi-well format. We found that the biosensor can detect as little as 0.15 pmol of cAMP, and that the sensitivity is not impaired by non-physiological salt concentrations or pH values. Notably, the assay tolerated desiccation and storage of the protein without affecting Epac1-camps cyclic nucleotide sensitivity.
Conclusions
We found that determination cAMP in lysates obtained from cell assays or tissue samples by purified Epac1-camps is a robust, fast, and sensitive assay suitable for routine and high throughput analyses.
Funder
Bundesministerium für Bildung und Forschung
German Federal Ministry of Education and Research
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. An WF, Tolliday N. Cell-based assays for high-throughput screening. Mol Biotechnol. 2010;45:180–6 https://doi.org/10.1007/s12033-010-9251-z.
2. Balfanz S, Strünker T, Frings S, Baumann A. A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem. 2005;93:440–51 https://doi.org/10.1111/j.1471-4159.2005.03034.x.
3. Biel M, Michalakis S. Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol. 2007;35:266–77 https://doi.org/10.1007/978-3-540-68964-5_7.
4. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847–85 https://doi.org/10.1152/physrev.00029.200.
5. Blenau W, Baumann A. Octopaminergic and tyraminergic signaling in the honeybee (Apis mellifera) brain: behavioral, pharmacological, and molecular aspects in Tahira Farooqui and Akhlaq Farooqui, editors, trace amines and neurological disorders. Oxford: Academic Press; 2016. p. 203–20.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献