Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies

Author:

Dabaghi Shima,Ataei Seyed Ahmad,Taheri Ali

Abstract

Abstract Background Rhamnolipids are a group of the extracellular microbial surface-active molecules produced by certain Pseudomonas species with various environmental and industrial applications. The goal of the present research was to identify and optimize key process parameters for Pseudomonas aeruginosa PTCC 1074s synthesis of rhamnolipids utilizing soybean meal in solid state fermentation. A fractional factorial design was used to screen the key nutritional and environmental parameters to achieve the high rhamnolipid production. Response surface methodology was used to optimize the levels of four significant factors. Results The characterization of biosurfactant by TLC, FT-IR and H-NMR showed the rhamnolipids presence. In the optimum conditions (temperature 34.5 °C, humidity 80%, inoculum size 1.4 mL, and glycerol 5%), the experimental value of rhamnolipid production was 19.68 g/kg dry substrate. The obtained rhamnolipid biosurfactant decreased water's surface tension from 71.8 ± 0.4 to 32.2 ± 0.2 mN/m with a critical micelle concentration of nearly 70 mg/L. Additionally, analysis of the emulsification activity revealed that the generated biosurfactant was stable throughout a broad pH, temperature, and NaCl concentration range. Conclusions The current study confirmed the considerable potential of agro-industrial residues in the production of rhamnolipid and enhanced the production yield by screening and optimizing the significant process parameters.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Reference51 articles.

1. Chandrasekaran EV, BeMiller JN, Song-Chiau DL. Isolation, partial characterization, and biological properties of polysaccharides from crude papain. Carbohydr Res. 1987;860:105–15.

2. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol R. 1997;61:47–64.

3. Zambry NS, Rusly NS, Awang MS, Noh NAM, Yahya ARM. Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil. Bioprocess Biosyst Eng. 2021. https://doi.org/10.1007/s00449-021-02543-5.

4. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomasa TA, Ravji TR, Natarajaseenivasan K. Optimization and production of a biosurfactant from the sponge-ssociated marine fungus Aspergillus ustus MSF3. Colloids Surf B. 2009. https://doi.org/10.1016/j.colsurfb.2009.05.025.

5. Saharan BS, Sahu RK, Sharma D. A review on biosurfactants: fermentation. Current developments and perspectives. J Genet Eng Biotechnol. 2011;29:1–39.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3