Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function

Author:

Fallah Ziarani Masoumeh,Tohidfar Masoud,Navvabi Mohammad

Abstract

Abstract Background Callus induction is the first step in optimizing plant regeneration. Fit embryogenesis and shooting rely on callus induction. In addition, using artificial intelligence models in combination with an algorithm can be helpful in the optimization of in vitro culture. The present study aimed to evaluate the percentage and speed of callus induction optimization in carrot with a Multilayer Perceptron-Single point discrete genetic algorithm (GA). Materials and methods In this study, the outputs included callus induction percentage and speed, while inputs were different types and concentrations of plant growth regulator (0. 5, 0.2 mg/l 2,4-D, 0.3, 0.2, 0.5 mg/l BAP, 1, 0.2 mg/l Kin, and 2 mg/l NAA), different explants (shoot, root, leaf, and nodal), a different concentration compound of MS medium (1 × MS, 4× MS, and 8× MS) and time of sampling. The data were obtained in the laboratory, and multilayer perceptron (MLP) and radial basis function (RBF), two well-known ANNs, were employed to model. Then, GA was used for optimization, and sensitivity analysis was performed to indicate the inputs’ importance. Results The results showed that MLP had better prediction efficiency than RBF. Based on the results, R2 in training and testing data was 95 and 95% for the percentage of callus induction, while it was 94 and 95% for the speed of callus induction, respectively. In addition, a concentration compound of MS had high sensitivity, while times of sampling had low sensitivity. Based on the MLP-Single point discrete GA, the best results were obtained for shoot explants, 1× MS media, and 0.5 mg/l 2, 4-D + 0.5 mg/l BAP. Further, a non-significant difference was observed between the test result and predicted MLP. Conclusions Generally, MLP-Single point discrete GA is considered a potent tool for predicting treatment and fit model results used in plant tissue culture and selecting the best medium for callus induction.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3