Author:
Govindappa Prem Kumar,Begom Mosammat,Gupta Yash,Elfar John C.,Rawat Manmeet,Elfar Walaa
Abstract
Abstract
Background
Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI.
Results
The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice.
Conclusions
To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献