Method for quantification of porcine type I interferon activity using luminescence, by direct and indirect means

Author:

Puckette Michael,Barrera J.,Schwarz M.,Rasmussen M.

Abstract

Abstract Background Type I interferons are widely used in research applications and as biotherapeutics. Current assays used to measure interferon concentrations, such as plaque reduction assays and ELISA, are expensive, technically challenging, and may take days to provide results. We sought to develop a robust and rapid assay to determine interferon concentrations produced from transiently transfected cell cultures. Method Indirect quantification of recombinant interferon was evaluated using a novel bi-cistronic construct encoding the Foot-and-mouth disease virus 2A translational interrupter sequence to yield equimolar expression of Gaussia princeps luciferase and porcine interferon α. Direct quantification was evaluated by expression of a novel fusion protein comprised of Gaussia princeps luciferase and porcine type I interferon. Plasmids encoding constructs are transiently transfected into cell cultures and supernatant harvested for testing of luminescence, ELISA determined concentration, and anti-viral activity against vesicular stomatitis virus. Results Bi-cistronic constructs, utilized for indirect quantification, demonstrate both luciferase activity and anti-viral activity. Fusion proteins, utilized for direct quantification, retained secretion and luminescence however only the interferon α fusion protein had antiviral activity comparable to wildtype porcine interferon α. A strong linear correlation was observed between dilution and luminescence for all compounds over a dynamic range of concentrations. Conclusion The correlation of antiviral and luciferase activities demonstrated the utility of this approach, both direct and indirect, to rapidly determine recombinant interferon concentrations. Concentration can be determined over a more dynamic concentration range than available ELISA based assays using this methodology.

Funder

U.S. Department of Homeland Security

Oak Ridge Institute for Science and Education

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3