A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization

Author:

Farouk Asmaa E.ORCID,Fahmy Sohair R.ORCID,Soliman Amel M.ORCID,Ibrahim Sherif Abdelaziz,Sadek Shimaa A.ORCID

Abstract

Abstract Background Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. Methods The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. Results The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. Conclusion These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3