Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation

Author:

Bánfalvi ZsófiaORCID,Csákvári Edina,Villányi Vanda,Kondrák Mihály

Abstract

Abstract Background Gene editing using the CRISPR/Cas9 system has become a routinely applied method in several plant species. The most convenient gene delivery system is Agrobacterium-mediated gene transfer with antibiotic selection and stable genomic integration of transgenes, including Cas9. For elimination of transgenes in the segregating progeny, selfing is applied in many plant species. This approach, however, cannot be widely employed in potato because most of the commercial potato cultivars are self-incompatible. Results In this study, the efficiency of a transient Cas9 expression system with positive/negative selection based on codA-nptII fusion was tested. The PHYTOENE DESATURASE (PDS) gene involved in carotenoid biosynthesis was targeted. A new vector designated PROGED::gPDS carrying only the right border of T-DNA was constructed. Using only the positive selection function of PROGED::gPDS and the restriction enzyme site loss method in PCR of genomic DNA after digestion with the appropriate restriction enzyme, it was demonstrated that the new vector is as efficient in gene editing as a traditional binary vector with right- and left-border sequences. Nevertheless, 2 weeks of positive selection followed by negative selection did not result in the isolation of PDS mutants. In contrast, we found that with 3-day positive selection, PDS mutants appear in the regenerating population with a minimum frequency of 2–10%. Interestingly, while large deletions (> 100 bp) were generated by continuous positive selection, the 3-day selection resulted in deletions and substitutions of only a few bp. Two albinos and three chimaeras with white and green leaf areas were found among the PDS mutants, while all the other PDS mutant plants were green. Based on DNA sequence analysis some of the green plants were also chimaeras. Upon vegetative propagation from stem segments in vitro, the phenotype of the plants obtained even by positive selection did not change, suggesting that the expression of Cas9 and gPDS is silenced or that the DNA repair system is highly active during the vegetative growth phase in potato. Conclusions Gene-edited plants can be obtained from potatoes by Agrobacterium-mediated transformation with 3-day antibiotic selection with a frequency high enough to identify the mutants in the regenerating plant population using PCR.

Funder

NKFI

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3