Isolation of axenic cyanobacterium and the promoting effect of associated bacterium on axenic cyanobacterium

Author:

Gao Suqin,Kong YunORCID,Yu Jing,Miao Lihong,Ji Lipeng,Song Lirong,Zeng Chi

Abstract

Abstract Background Harmful cyanobacterial blooms have attracted wide attention all over the world as they cause water quality deterioration and ecosystem health issues. Microcystis aeruginosa associated with a large number of bacteria is one of the most common and widespread bloom-forming cyanobacteria that secret toxins. These associated bacteria are considered to benefit from organic substrates released by the cyanobacterium. In order to avoid the influence of associated heterotrophic bacteria on the target cyanobacteria for physiological and molecular studies, it is urgent to obtain an axenic M. aeruginosa culture and further investigate the specific interaction between the heterotroph and the cyanobacterium. Results A traditional and reliable method based on solid-liquid alternate cultivation was carried out to purify the xenic cyanobacterium M. aeruginosa FACHB-905. On the basis of 16S rDNA gene sequences, two associated bacteria named strain B905–1 and strain B905–2, were identified as Pannonibacter sp. and Chryseobacterium sp. with a 99 and 97% similarity value, respectively. The axenic M. aeruginosa FACHB-905A (Microcystis 905A) was not able to form colonies on BG11 agar medium without the addition of strain B905–1, while it grew well in BG11 liquid medium. Although the presence of B905–1 was not indispensable for the growth of Microcystis 905A, B905–1 had a positive effect on promoting the growth of Microcystis 905A. Conclusions The associated bacteria were eliminated by solid-liquid alternate cultivation method and the axenic Microcystis 905A was successfully purified. The associated bacterium B905–1 has the potentiality to promote the growth of Microcystis 905A. Moreover, the purification technique for cyanobacteria described in this study is potentially applicable to a wider range of unicellular cyanobacteria.

Funder

National High-tech Research and Development Program

Key Project of Jingzhou Science and Technology

Postdoctoral Research Foundation of China

Natural Science Foundation of Jiangsu Province

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3