sEMG-based automatic characterization of swallowed materials

Author:

Hassan Eman A.,Khalifa Yassin,Morsy Ahmed A.

Abstract

AbstractMonitoring of ingestive activities is critically important for managing the health and wellness of individuals with various health conditions, including the elderly, diabetics, and individuals seeking better weight control. Monitoring swallowing events can be an ideal surrogate for developing streamlined methods for effective monitoring and quantification of eating or drinking events. Swallowing is an essential process for maintaining life. This seemingly simple process is the result of coordinated actions of several muscles and nerves in a complex fashion. In this study, we introduce automated methods for the detection and quantification of various eating and drinking activities. Wireless surface electromyography (sEMG) was used to detect chewing and swallowing from sEMG signals obtained from the sternocleidomastoid muscle, in addition to signals obtained from a wrist-mounted IMU sensor. A total of 4675 swallows were collected from 55 participants in the study. Multiple methods were employed to estimate bolus volumes in the case of fluid intake, including regression and classification models. Among the tested models, neural networks-based regression achieved an R2 of 0.88 and a root mean squared error of 0.2 (minimum bolus volume was 10 ml). Convolutional neural networks-based classification (when considering each bolus volume as a separate class) achieved an accuracy of over 99% using random cross-validation and around 66% using cross-subject validation. Multiple classification methods were also used for solid bolus type detection, including SVM and decision trees (DT), which achieved an accuracy above 99% with random validation and above 94% in cross-subject validation. Finally, regression models with both random and cross-subject validation were used for estimating the solid bolus volume with an R2 value that approached 1 and root mean squared error values as low as 0.00037 (minimum solid bolus weight was 3 gm). These reported results lay the foundation for a cost-effective and non-invasive method for monitoring swallowing activities which can be extremely beneficial in managing various chronic health conditions, such as diabetes and obesity.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3