Identification of ocular refraction based on deep learning algorithm as a novel retinoscopy method

Author:

Zou Haohan,Shi Shenda,Yang Xiaoyan,Ma Jiaonan,Fan Qian,Chen Xuan,Wang Yibing,Zhang Mingdong,Song Jiaxin,Jiang Yanglin,Li Lihua,He Xin,Jhanji Vishal,Wang Shengjin,Song Meina,Wang Yan

Abstract

Abstract Background The evaluation of refraction is indispensable in ophthalmic clinics, generally requiring a refractor or retinoscopy under cycloplegia. Retinal fundus photographs (RFPs) supply a wealth of information related to the human eye and might provide a promising approach that is more convenient and objective. Here, we aimed to develop and validate a fusion model-based deep learning system (FMDLS) to identify ocular refraction via RFPs and compare with the cycloplegic refraction. In this population-based comparative study, we retrospectively collected 11,973 RFPs from May 1, 2020 to November 20, 2021. The performance of the regression models for sphere and cylinder was evaluated using mean absolute error (MAE). The accuracy, sensitivity, specificity, area under the receiver operating characteristic curve, and F1-score were used to evaluate the classification model of the cylinder axis. Results Overall, 7873 RFPs were retained for analysis. For sphere and cylinder, the MAE values between the FMDLS and cycloplegic refraction were 0.50 D and 0.31 D, representing an increase of 29.41% and 26.67%, respectively, when compared with the single models. The correlation coefficients (r) were 0.949 and 0.807, respectively. For axis analysis, the accuracy, specificity, sensitivity, and area under the curve value of the classification model were 0.89, 0.941, 0.882, and 0.814, respectively, and the F1-score was 0.88. Conclusions The FMDLS successfully identified the ocular refraction in sphere, cylinder, and axis, and showed good agreement with the cycloplegic refraction. The RFPs can provide not only comprehensive fundus information but also the refractive state of the eye, highlighting their potential clinical value.

Funder

Tianjin Key Medical Discipline (Specialty) Construction Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3