Author:
Zhou Peng,Wang Guangpu,Wang Shuo,Li Huanming,Liu Chong,Sun Jinglai,Yu Hui
Abstract
Abstract
Background
Myocardial bridges are congenital anatomical abnormalities in which myocardium covers a segment of coronary arteries, leading to stenocardia, myocardial ischemia, and sudden cardiac death in severe cases. However, automatic diagnosis of myocardial bridge presents significant challenges.
Method
A novel framework of myocardial bridge detection with x-ray angiography sequence is proposed, which can realize automatic detection of vessel stenosis and myocardial bridge. Firstly, we employ a novel neural network model for coronary vessel segmentation, which consists of both CNNs and transformer structures to effectively extract both local and global information of the vessels. Secondly, we describe the vessel segment information, establish the vessel tree in the image, and fuse the vessel tree information between sequences. Finally, based on vessel stenosis detection, we realize automatic detection of the myocardial bridge by querying the blood vessels between the image sequence information.
Results
In experiment, we evaluate the segmentation results using two metrics, Dice and ASD, and achieve scores of 0.917 and 1.39, respectively. In the stenosis detection, we achieve an average accuracy rate of 92.7% in stenosis detection among 262 stenoses. In multi-frame image processing, vessels in different frames can be well-matched, and the accuracy of myocardial bridge detection achieves 75%.
Conclusions
Our experimental results demonstrate that the algorithm can automatically detect stenosis and myocardial bridge, providing a new idea for subsequent automatic diagnosis of coronary vessels.
Funder
Major Science and Technology Projects of Tianjin
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献