Abstract
Abstract
Background
The amount of propofol needed to induce loss of responsiveness varied widely among patients, and they usually required less than the initial dose recommended by the drug package inserts. Identifying precisely the moment of loss of responsiveness will determine the amount of propofol each patient needs. Currently, methods to decide the exact moment of loss of responsiveness are based on subjective analysis, and the monitors that use objective methods fail in precision. Based on previous studies, we believe that the blink reflex can be useful to characterize, more objectively, the transition from responsiveness to unresponsiveness. The purpose of this study is to investigate the relation between the electrically evoked blink reflex and the level of sedation/anesthesia measured with an adapted version of the Richmond Agitation–Sedation Scale, during the induction phase of general anesthesia with propofol and remifentanil. Adding the blink reflex to other variables may allow a more objective assessment of the exact moment of loss of responsiveness and a more personalized approach to anesthesia induction.
Results
The electromyographic-derived features proved to be good predictors to estimate the different levels of sedation/anesthesia. The results of the multinomial analysis showed a reasonable performance of the model, explaining almost 70% of the adapted Richmond Agitation–Sedation Scale variance. The overall predictive accuracy for the model was 73.6%, suggesting that it is useful to predict loss of responsiveness.
Conclusions
Our developed model was based on the information of the electromyographic-derived features from the blink reflex responses. It was able to predict the drug effect in patients undergoing general anesthesia, which can be helpful for the anesthesiologists to reduce the overwhelming variability observed between patients and avoid many cases of overdosing and associated risks. Despite this, future research is needed to account for variabilities in the clinical response of the patients and with the interactions between propofol and remifentanil. Nevertheless, a method that could allow for an automatic prediction/detection of loss of responsiveness is a step forward for personalized medicine.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference25 articles.
1. Ferreira A, Nunes C, Ferreira AL, Tedim R, Amorim P. Inter-patient variability and predictive factors of propofol requirements and estimated concentrations for loss of consciousness and recovery. J Neurosurg Anesthesiol. 2015;27:260–1.
2. Ferreira A, Nunes C, Castro A, Ferreira AL, Pedrosa S, Amorim P. A high variability in propofol requirements for anesthesia induction is shown independently of remifentanil. J Neurosurg Anesthesiol. 2015;27(4):431–2. https://doi.org/10.1097/ANA.0000000000000217.
3. Sepúlveda PO, Carrasco E, Tapia LF, Ramos M, Cruz F, Conget P, et al. Evidence of hysteresis in propofol pharmacodynamics. Anaesthesia. 2018;73:40–8.
4. Castro A, Bressan N, Lobo F, Nunes C, Amorim P. The higher the propofol concentration needed for loss of consciousness the larger its difference to the concentrations required at maintenance, using TCI and BIS guided anesthesia. Eur J Anaesthesiol. 2008;25:150.
5. Mandel JE. Safe driving on the pharmacokinetic highway. Anesth Analg Anesth Analg. 2017;125:1100–1.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献