Author:
He Cong,Wu Fangye,Fu Linfeng,Kong Lingting,Lu Zefeng,Qi Yingpeng,Xu Hongwei
Funder
Zhejiang Medical Health Science and Technology Program
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Chen W, Li R, Yin K, Liang J, Li H, Chen X, Sheng Z, Yu H, Mu D. Clinical feasibility of using effective atomic number maps derived from non-contrast spectral computed tomography to identify non-calcified atherosclerotic plaques: a preliminary study. Quant Imag Med Surg. 2022;12:2280–7.
2. Chen Q, Pan T, Wang YN, Schoepf UJ, Bidwell SL, Qiao H, Feng Y, Xu C, Xu H, Xie G, et al. A coronary CT angiography radiomics model to identify vulnerable plaque and predict cardiovascular events. Radiology. 2023;307:e221693.
3. Liu W, Laranjo L, Klimis H, Chiang J, Yue J, Marschner S, Quiroz JC, Jorm L, Chow CK. Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis. Eur Heart J Qual Care Clin Outcomes. 2023;9:310–22.
4. Hamatani Y, Nishi H, Iguchi M, Esato M, Tsuji H, Wada H, Hasegawa K, Ogawa H, Abe M, Fukuda S, Akao M. Machine learning risk prediction for incident heart failure in patients with atrial fibrillation. JACC Asia. 2022;2:706–16.
5. Li L, Zhang Z, Zhou L, Zhang Z, Xiong Y, Hu Z, Yao Y. Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis. Eur Heart J Digit Health. 2023;4:245–53.