Author:
Chen Jian-Ling,Cheng Lan-Hsin,Wang Jane,Hsu Tun-Wei,Chen Chin-Yu,Tseng Ling-Ming,Guo Shu-Mei
Abstract
Abstract
Objectives
Use of an AI system based on deep learning to investigate whether the system can aid in distinguishing malignant from benign calcifications on spot magnification mammograms, thus potentially reducing unnecessary biopsies.
Methods
In this retrospective study, we included public and in-house datasets with annotations for the calcifications on both craniocaudal and mediolateral oblique vies, or both craniocaudal and mediolateral views of each case of mammograms. All the lesions had pathological results for correlation. Our system comprised an algorithm based on You Only Look Once (YOLO) named adaptive multiscale decision fusion module. The algorithm was pre-trained on a public dataset, Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM), then re-trained and tested on the in-house dataset of spot magnification mammograms. The performance of the system was investigated by receiver operating characteristic (ROC) analysis.
Results
We included 1872 images from 753 calcification cases (414 benign and 339 malignant) from CBIS-DDSM. From the in-house dataset, 636 cases (432 benign and 204 malignant) with 1269 spot magnification mammograms were included, with all lesions being recommended for biopsy by radiologists. The area under the ROC curve for our system on the in-house testing dataset was 0.888 (95% CI 0.868–0.908), with a sensitivity of 88.4% (95% CI 86.9–8.99%), specificity of 80.8% (95% CI 77.6–84%), and an accuracy of 84.6% (95% CI 81.8–87.4%) at the optimal cutoff value. Using the system with two views of spot magnification mammograms, 80.8% benign biopsies could be avoided.
Conclusion
The AI system showed good accuracy for classification of calcifications on spot magnification mammograms which were all categorized as suspicious by radiologists, thereby potentially reducing unnecessary biopsies.
Funder
Ministry of Science and Technology, Taiwan
Taipei Veterans General Hospital, Taiwan.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference40 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
2. Bent CK, Bassett LW, D’Orsi CJ, Sayre JW. The positive predictive value of BI-RADS microcalcification descriptors and final assessment categories. AJR Am J Roentgenol. 2010;194:1378–83.
3. Sickles E, D’Orsi CJ. ACR BI-RADS® follow-up and outcome monitoring. In: ACR, editor. BI-RADS® atlas, breast imaging reporting and data system. 5th ed. Reston: American College of Radiology; 2013.
4. Elezaby M, Li G, Bhargavan-Chatfield M, Burnside ES, DeMartini WB. ACR BI-RADS assessment category 4 subdivisions in diagnostic mammography: utilization and outcomes in the national mammography database. Radiology. 2018;287:416–22.
5. Domingo L, Hofvind S, Hubbard RA, Román M, Benkeser D, Sala M, Castells X. Cross-national comparison of screening mammography accuracy measures in U.S., Norway, and Spain. Eur Radiol. 2016;26:2520–8.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献