Development of a bowel sound detector adapted to demonstrate the effect of food intake

Author:

Wang NingORCID,Testa Alison,Marshall Barry J.

Abstract

Abstract Objective Bowel sounds (BS) carry useful information about gastrointestinal condition and feeding status. Interest in computerized bowel sound-based analysis has grown recently and techniques have evolved rapidly. An important first step for these analyses is to extract BS segments, whilst neglecting silent periods. The purpose of this study was to develop a convolutional neural network-based BS detector able to detect all types of BS with accurate time stamps, and to investigate the effect of food consumption on some acoustic features of BS with the proposed detector. Results Audio recordings from 40 volunteers were collected and a BS dataset consisting of 6700 manually labelled segments was generated for training and testing the proposed BS detector. The detector attained 91.06% and 90.78% accuracy for the validation dataset and across-subject test dataset, respectively, with a well-balanced sensitivity and specificity. The detection rates evaluated on different BS types were also satisfactory. Four acoustic features were evaluated to investigate the food effect. The total duration and spectral bandwidth of BS showed significant differences before and after food consumption, while no significant difference was observed in mean-crossing rate values. Conclusion We demonstrated that the proposed BS detector is effective in detecting all types of BS, and providing an accurate time stamp for each BS. The characteristics of BS types and the effect on detection accuracy is discussed. The proposed detector could have clinical application for post-operative ileus prognosis, and monitoring of food intake.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3