A probabilistic approach for calibration time reduction in hybrid EEG–fTCD brain–computer interfaces

Author:

Khalaf Aya,Akcakaya Murat

Abstract

Abstract Background Generally, brain–computer interfaces (BCIs) require calibration before usage to ensure efficient performance. Therefore, each BCI user has to attend a certain number of calibration sessions to be able to use the system. However, such calibration requirements may be difficult to fulfill especially for patients with disabilities. In this paper, we introduce a probabilistic transfer learning approach to reduce the calibration requirements of our EEG–fTCD hybrid BCI designed using motor imagery (MI) and flickering mental rotation (MR)/word generation (WG) paradigms. The proposed approach identifies the top similar datasets from previous BCI users to a small training dataset collected from a current BCI user and uses these datasets to augment the training data of the current BCI user. To achieve such an aim, EEG and fTCD feature vectors of each trial were projected into scalar scores using support vector machines. EEG and fTCD class conditional distributions were learnt separately using the scores of each class. Bhattacharyya distance was used to identify similarities between class conditional distributions obtained using training trials of the current BCI user and those obtained using trials of previous users. Results Experimental results showed that the performance obtained using the proposed transfer learning approach outperforms the performance obtained without transfer learning for both MI and flickering MR/WG paradigms. In particular, it was found that the calibration requirements can be reduced by at least 60.43% for the MI paradigm, while at most a reduction of 17.31% can be achieved for the MR/WG paradigm. Conclusions Data collected using the MI paradigm show better generalization across subjects.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3