COMSOL Multiphysics® modelling of oxygen diffusion through a cellulose nanofibril conduit employed for peripheral nerve repair

Author:

Towne Julia,Carter Nicklaus,Neivandt David J.ORCID

Abstract

Abstract Background Peripheral nerve injury can cause significant impairment, and the current methods for facilitating repair, particularly over distances greater than approximately 1 mm, are not entirely effective. Allografts, autografts, and synthetic conduits are three of the most common surgical interventions for peripheral nerve repair; however, each has limitations including poor biocompatibility, adverse immune responses, and the need for successive surgeries. A potential new method for promoting peripheral nerve repair that addresses the shortcomings of current interventions is a biocompatible cellulose nanofibril (CNF) conduit that degrades in-vivo over time. Preliminary testing in multiple animal models has yielded positive results, but more information is needed regarding how the CNF conduit facilitates nutrient and gas flow. Results The current work employs 3D modelling and analysis via COMSOL Multiphysics® to determine how the CNF conduit facilitates oxygen movement both radially through the conduit walls and axially along the length of the conduit. Various CNF wall permeabilities, conduit lengths, and nerve-to-conduit diameter ratios have been examined; all of which were shown to have an impact on the resultant oxygen profile within the conduit. When the walls of the CNF conduit were modeled to have significant oxygen permeability, oxygen diffusion across the conduit was shown to dominate relative to axial diffusion of oxygen along the length of the conduit, which was otherwise the controlling diffusion mechanism. Conclusions The results of this study suggest that there is a complex relationship between axial and radial diffusion as the properties of the conduit such as length, diameter, and permeability are altered and when investigating various locations within the model. At low wall permeabilities the axial diffusion is dominant for all configurations, while for higher wall permeabilities the radial diffusion became dominant for smaller diameters. The length of the conduit did not alter the mechanism of diffusion, but rather had an inverse relationship with the magnitude of the overall concentration profile. As such the modeling results may be employed to predict and control the amount and distribution of oxygenation throughout the conduit, and hence to guide experimental conduit design.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3