Acoustic analysis and detection of pharyngeal fricative in cleft palate speech using correlation of signals in independent frequency bands and octave spectrum prominent peak

Author:

He Fei,Wang Xiyue,Yin Heng,Zhang Han,Yang Gang,He LingORCID

Abstract

Abstract Background Pharyngeal fricative is one typical compensatory articulation error of cleft palate speech. It passively influences daily communication for people who suffer from it. The automatic detection of pharyngeal fricatives in cleft palate speech can provide information for clinical doctors and speech-language pathologists to aid in diagnosis. Results This paper proposes two features (CSIFs: correlation of signals in independent frequency bands; OSPP: octave spectrum prominent peak) to detect pharyngeal fricative speech. CSIFs feature is proposed to detect the distribution characteristics of frequency components in pharyngeal fricative speech caused by the changed place of articulation and movement of articulators. While OSPP is presented to reflect the concentration degree of prominent peak which is closely related to the place of articulation in pharyngeal fricative, both features are investigated to relate to the altered production process of pharyngeal fricative. To evaluate the capability of these two features to detect pharyngeal fricative, we collected a speech database covering all the types of initial consonants in which pharyngeal fricatives occur. In this detection task, the classifier used to discriminate pharyngeal fricative speech and normal speech is based on ensemble learning. Conclusion The detection accuracy obtained with CSIFs and OSPP features ranges from 83.5 to 84.5% and from 85 to 87%, respectively. When these two features are combined, the detection accuracy for pharyngeal fricative speech ranges from 88 to 89%, with an AUC (area under the receiver operating characteristic curve) value of 93%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference68 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3