Deep learning of longitudinal chest X-ray and clinical variables predicts duration on ventilator and mortality in COVID-19 patients

Author:

Duanmu Hongyi,Ren Thomas,Li Haifang,Mehta Neil,Singer Adam J.,Levsky Jeffrey M.,Lipton Michael L.,Duong Tim Q.

Abstract

Abstract Objectives To use deep learning of serial portable chest X-ray (pCXR) and clinical variables to predict mortality and duration on invasive mechanical ventilation (IMV) for Coronavirus disease 2019 (COVID-19) patients. Methods This is a retrospective study. Serial pCXR and serial clinical variables were analyzed for data from day 1, day 5, day 1–3, day 3–5, or day 1–5 on IMV (110 IMV survivors and 76 IMV non-survivors). The outcome variables were duration on IMV and mortality. With fivefold cross-validation, the performance of the proposed deep learning system was evaluated by receiver operating characteristic (ROC) analysis and correlation analysis. Results Predictive models using 5-consecutive-day data outperformed those using 3-consecutive-day and 1-day data. Prediction using data closer to the outcome was generally better (i.e., day 5 data performed better than day 1 data, and day 3–5 data performed better than day 1–3 data). Prediction performance was generally better for the combined pCXR and non-imaging clinical data than either alone. The combined pCXR and non-imaging data of 5 consecutive days predicted mortality with an accuracy of 85 ± 3.5% (95% confidence interval (CI)) and an area under the curve (AUC) of 0.87 ± 0.05 (95% CI) and predicted the duration needed to be on IMV to within 2.56 ± 0.21 (95% CI) days on the validation dataset. Conclusions Deep learning of longitudinal pCXR and clinical data have the potential to accurately predict mortality and duration on IMV in COVID-19 patients. Longitudinal pCXR could have prognostic value if these findings can be validated in a large, multi-institutional cohort.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3