Artificial intelligence-based nomogram for small-incision lenticule extraction

Author:

Park Seungbin,Kim Hannah,Kim Laehyun,Kim Jin-kuk,Lee In Sik,Ryu Ik Hee,Kim YoungjunORCID

Abstract

Abstract Background Small-incision lenticule extraction (SMILE) is a surgical procedure for the refractive correction of myopia and astigmatism, which has been reported as safe and effective. However, over- and under-correction still occur after SMILE. The necessity of nomograms is emphasized to achieve optimal refractive results. Ophthalmologists diagnose nomograms by analyzing the preoperative refractive data with their individual knowledge which they accumulate over years of experience. Our aim was to predict the nomograms of sphere, cylinder, and astigmatism axis for SMILE accurately by applying machine learning algorithm. Methods We retrospectively analyzed the data of 3,034 eyes composed of four categorical features and 28 numerical features selected from 46 features. The multiple linear regression, decision tree, AdaBoost, XGBoost, and multi-layer perceptron were employed in developing the nomogram models for sphere, cylinder, and astigmatism axis. The scores of the root-mean-square error (RMSE) and accuracy were evaluated and compared. Subsequently, the feature importance of the best models was calculated. Results AdaBoost achieved the highest performance with RMSE of 0.1378, 0.1166, and 5.17 for the sphere, cylinder, and astigmatism axis, respectively. The accuracies of which error below 0.25 D for the sphere and cylinder nomograms and 25° for the astigmatism axis nomograms were 0.969, 0.976, and 0.994, respectively. The feature with the highest importance was preoperative manifest refraction for all the cases of nomograms. For the sphere and cylinder nomograms, the following highly important feature was the surgeon. Conclusions Among the diverse machine learning algorithms, AdaBoost exhibited the highest performance in the prediction of the sphere, cylinder, and astigmatism axis nomograms for SMILE. The study proved the feasibility of applying artificial intelligence (AI) to nomograms for SMILE. Also, it may enhance the quality of the surgical result of SMILE by providing assistance in nomograms and preventing the misdiagnosis in nomograms.

Funder

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3