Predicting post-operative vault and optimal implantable collamer lens size using machine learning based on various ophthalmic device combinations

Author:

Chen Xi,Ye Yiming,Yao Huan,Liu Chang,He Anqi,Hou Xiangtao,Zhao Keming,Cui Zedu,Li Yan,Qiu Jin,Chen Pei,Yang Ying,Zhuang Jing,Yu Keming

Abstract

Abstract Background Implantable Collamer Lens (ICL) surgery has been proven to be a safe, effective, and predictable method for correcting myopia and myopic astigmatism. However, predicting the vault and ideal ICL size remains technically challenging. Despite the growing use of artificial intelligence (AI) in ophthalmology, no AI studies have provided available choices of different instruments and combinations for further vault and size predictions. This study aimed to fill this gap and predict post-operative vault and appropriate ICL size utilizing the comparison of numerous AI algorithms, stacking ensemble learning, and data from various ophthalmic devices and combinations. Results This retrospective and cross-sectional study included 1941 eyes of 1941 patients from Zhongshan Ophthalmic Center. For both vault prediction and ICL size selection, the combination containing Pentacam, Sirius, and UBM demonstrated the best results in test sets [R2 = 0.499 (95% CI 0.470–0.528), mean absolute error = 130.655 (95% CI 128.949–132.111), accuracy = 0.895 (95% CI 0.883–0.907), AUC = 0.928 (95% CI 0.916–0.941)]. Sulcus-to-sulcus (STS), a parameter from UBM, ranked among the top five significant contributors to both post-operative vault and optimal ICL size prediction, consistently outperforming white-to-white (WTW). Moreover, dual-device combinations or single-device parameters could also effectively predict vault and ideal ICL size, and excellent ICL selection prediction was achievable using only UBM parameters. Conclusions Strategies based on multiple machine learning algorithms for different ophthalmic devices and combinations are applicable for vault predicting and ICL sizing, potentially improving the safety of the ICL implantation. Moreover, our findings emphasize the crucial role of UBM in the perioperative period of ICL surgery, as it provides key STS measurements that outperformed WTW measurements in predicting post-operative vault and optimal ICL size, highlighting its potential to enhance ICL implantation safety and accuracy.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3