Abstract
Abstract
Background
Adverse neurological events associated with left ventricular assist devices (LVADs) have been suspected to be related to thrombosis. This study aimed to understand the risks of thrombosis with variations in the implanted device orientation. A severely dilated pulsatile patient-specific left ventricle, modelled with computational fluid dynamics, was utilised to identify the risk of thrombosis for five cannulation angles. With respect to the inflow cannula axis directed towards the mitral valve, the other angles were 25° and 20° towards the septum and 20° and 30° towards the free wall.
Results
Inflow cannula angulation towards the free wall resulted in longer blood residence time within the ventricle, slower ventricular washout and reduced pulsatility indices along the septal wall. Based on the model, the ideal inflow cannula alignment to reduce the risk of thrombosis was angulation towards the mitral valve and up to parallel to the septum, avoiding the premature clearance of incoming blood.
Conclusions
This study indicates the potential effects of inflow cannulation angles and may guide optimised implantation configurations; however, the ideal approach will be influenced by other patient factors and is suspected to change over the course of support.
Funder
The Prince Charles Hospital Foundation
National Health and Medical Research Council of Australia
National Heart Foundation of Australia
RWTH Aachen University
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献