Electrochemical modeling and evaluation for textile electrodes to skin

Author:

Song Jinzhong,Zhang Yu,Yang Yijing,Liu Hao,Zhou Tianshu,Zhang Kui,Li Fan,Xu Zhi,Liu Qingjun,Li JingsongORCID

Abstract

Abstract Background With the development of wearable health-monitoring technologies, a variety of textile electrodes have been produced and applied by researchers. However, there are no universal and effective methods even testing platforms for evaluating the skin–electrode electrochemical interface for textile electrodes because different human bodies have different skin characteristics. Methods An electrochemical modeling and evaluation for textile electrodes to skin was proposed, and two electrochemical evaluation platforms (EEP) were set up based on two simulated skin models (SSM). First, skin–electrode electrochemical interface (SEEI) models for traditional wet electrodes and textile electrodes were analyzed. Based on the SEEI models and YY/T 0196-2005 (Chinese YY/T pharmaceutical industry standard for disposable ECG electrode), three skin–electrode electrochemical characteristics (SEEC), including skin–electrode static impedance (SESI), skin–electrode alternating current impedance (SEAI), and skin–electrode polarization voltage (SEPV), were proposed. Then, three electrochemical evaluation methods for textile electrodes to skin were proposed and analyzed, which were the correlation between SEEC and skin–electrode contact pressure (SECP), skin–electrode relative movement (SERM), and conduction loss of active signals (CLAS). Finally, an electrochemical evaluation platform was set up based on an active simulated skin model (ASSM) and passive simulated skin model (PSSM). Results 9 feature parameters based on the passive electrochemical evaluation platform (PEEP) and 11 feature parameters based on the active electrochemical evaluation platform (AEEP) were obtained for evaluating textile electrodes. And four kinds of textile electrode characteristics including SEEC, SECP, SERM, and CLAS were quantitatively measured based on the electrochemical evaluation platform, and the testing accuracy and range for these characteristics were measured separately. Finally, correlation between SEEC and SECP for 10 kinds of textile electrode samples was studied, and 14 electrochemical characteristics and four skin–electrode contact pressure characteristics were extracted. Experimental results showed that significant correlations were found between six SEEC characteristics and SECP characteristics, and the correlation coefficient between ACI_3 and USECP was the highest. And the polarization voltages of most dry electrode samples showed a downward trend with the increase of contact pressure. Conclusions The electrochemical evaluation platform yielded effective experimental data and could provide strong support for the evaluation and application of textile electrodes, which was also effective in evaluating other bioelectric electrodes such as 3M electrode, stainless steel electrode, dry electrode and microneedle electrode.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center

China space medicine engineering advanced research

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3