Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications

Author:

Chu HongzuoORCID,Cao Yong,Jiang Jin,Yang Jiehong,Huang Mengyin,Li Qijie,Jiang Changhua,Jiao Xuejun

Abstract

Abstract Background Mental workload is a critical consideration in complex man–machine systems design. Among various mental workload detection techniques, multimodal detection techniques integrating electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals have attracted considerable attention. However, existing EEG–fNIRS-based mental workload detection methods have certain defects, such as complex signal acquisition channels and low detection accuracy, which restrict their practical application. Methods The signal acquisition configuration was optimized by analyzing the feature importance in mental workload recognition model and a more accurate and convenient EEG–fNIRS-based mental workload detection method was constructed. A classical Multi-Task Attribute Battery (MATB) task was conducted with 20 participating volunteers. Subjective scale data, 64-channel EEG data, and two-channel fNIRS data were collected. Results A higher number of EEG channels correspond to higher detection accuracy. However, there is no obvious improvement in accuracy once the number of EEG channels reaches 26, with a four-level mental workload detection accuracy of 76.25 ± 5.21%. Partial results of physiological analysis verify the results of previous studies, such as that the θ power of EEG and concentration of O2Hb in the prefrontal region increase while the concentration of HHb decreases with task difficulty. It was further observed, for the first time, that the energy of each band of EEG signals was significantly different in the occipital lobe region, and the power of $$\beta_{1}$$ β 1 and $$\beta_{2}$$ β 2 bands in the occipital region increased significantly with task difficulty. The changing range and the mean amplitude of O2Hb in high-difficulty tasks were significantly higher compared with those in low-difficulty tasks. Conclusions The channel configuration of EEG–fNIRS-based mental workload detection was optimized to 26 EEG channels and two frontal fNIRS channels. A four-level mental workload detection accuracy of 76.25 ± 5.21% was obtained, which is higher than previously reported results. The proposed configuration can promote the application of mental workload detection technology in military, driving, and other complex human–computer interaction systems.

Funder

national natural science foundation of china

experimental technology foundation of national key laboratory of human factors engineering

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3