Computer-aided therapeutic diagnosis for anorexia

Author:

Spinczyk DominikORCID,Bas Mateusz,Dzieciątko Mariusz,Maćkowski Michał,Rojewska Katarzyna,Maćkowska Stella

Abstract

Abstract Background Anorexia nervosa is a clinical disorder syndrome of the wide spectrum without a fully recognized etiology. The necessary issue in the clinical diagnostic process is to detect the causes of this disease (e.g., my body image, food, family, peers), which the therapist gradually comes to by verifying assumptions using proper methods and tools for diagnostic process. When a person is diagnosed with anorexia, a clinician (a doctor, a therapist or a psychologist) proposes a therapeutic diagnosis and considers the kind of treatment that should be applied. This process is also continued during therapeutic diagnosis. In both cases, it is recommended to apply computer-aided tools designed for testing and confirming the assumptions made by a psychologist. The paper aims to present the computer-aided therapeutic diagnosis method for anorexia. The proposed method consists of 4 stages: free statements of a patient about his/her body image, the general sentiment analysis of statement based on Recurrent Neural Network, assessment of the intensity of five basic emotions: happiness, anger, sadness, fear and disgust (using the Nencki Affective Word List and conversion of words to their basic form), and the assessment of particular areas of difficulties—the sentiment analysis based on the dictionary approach was applied. Results The sentiment analysis of a document achieved 72% and 51% of effectiveness, respectively, for RNN and dictionary-based methods. The intensity of sadness (emotion) occurring within the dictionary method is differentiated between control and research group at the level of 10%. Conclusion The quick access to the sentiment analysis of a statement on the image of patient’s body, emotions experienced by the patient and particular areas of difficulties of people prone to the anorexia nervosa disorders, may help to establish the diagnosis in a very short time and start an immediate therapy. The proposed automatic method helps to avoid patient’s aversions towards the therapy, which may include avoiding patient–therapist communication, talking about less essential topics, coming late for the sessions. These circumstances can guarantee promising prognosis for recovering.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3