Radiotranscriptomics of non-small cell lung carcinoma for assessing high-level clinical outcomes using a machine learning-derived multi-modal signature

Author:

Trivizakis Eleftherios,Koutroumpa Nikoletta-Maria,Souglakos John,Karantanas Apostolos,Zervakis Michalis,Marias Kostas

Abstract

Abstract Background Multi-omics research has the potential to holistically capture intra-tumor variability, thereby improving therapeutic decisions by incorporating the key principles of precision medicine. The purpose of this study is to identify a robust method of integrating features from different sources, such as imaging, transcriptomics, and clinical data, to predict the survival and therapy response of non-small cell lung cancer patients. Methods 2996 radiomics, 5268 transcriptomics, and 8 clinical features were extracted from the NSCLC Radiogenomics dataset. Radiomics and deep features were calculated based on the volume of interest in pre-treatment, routine CT examinations, and then combined with RNA-seq and clinical data. Several machine learning classifiers were used to perform survival analysis and assess the patient’s response to adjuvant chemotherapy. The proposed analysis was evaluated on an unseen testing set in a k-fold cross-validation scheme. Score- and concatenation-based multi-omics were used as feature integration techniques. Results Six radiomics (elongation, cluster shade, entropy, variance, gray-level non-uniformity, and maximal correlation coefficient), six deep features (NasNet-based activations), and three transcriptomics (OTUD3, SUCGL2, and RQCD1) were found to be significant for therapy response. The examined score-based multi-omic improved the AUC up to 0.10 on the unseen testing set (0.74 ± 0.06) and the balance between sensitivity and specificity for predicting therapy response for 106 patients, resulting in less biased models and improving upon the either highly sensitive or highly specific single-source models. Six radiomics (kurtosis, GLRLM- and GLSZM-based non-uniformity from images with no filtering, biorthogonal, and daubechies wavelets), seven deep features (ResNet-based activations), and seven transcriptomics (ELP3, ZZZ3, PGRMC2, TRAK1, ATIC, USP7, and PNPLA2) were found to be significant for the survival analysis. Accordingly, the survival analysis for 115 patients was also enhanced up to 0.20 by the proposed score-based multi-omics in terms of the C-index (0.79 ± 0.03). Conclusions Compared to single-source models, multi-omics integration has the potential to improve prediction performance, increase model stability, and reduce bias for both treatment response and survival analysis.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning-based Detection of Greek Locations and Landmarks: A Qualitative Analysis of Weakly Supervised Classification and Supervised Detection;2023 8th International Conference on Mathematics and Computers in Sciences and Industry (MCSI);2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3