Author:
Wang Ni,Huang Yanqun,Liu Honglei,Fei Xiaolu,Wei Lan,Zhao Xiangkun,Chen Hui
Abstract
Abstract
Background
Conventional risk prediction techniques may not be the most suitable approach for personalized prediction for individual patients. Therefore, individualized predictive modeling based on similar patients has emerged. This study aimed to propose a comprehensive measurement of patient similarity using real-world electronic medical records data, and evaluate the effectiveness of the individualized prediction of a patient’s diabetes status based on the patient similarity.
Results
When using no more than 30% of the whole training sample, the personalized predictive models outperformed corresponding traditional models built on randomly selected training samples of the same size as the personalized models (P < 0.001 for all). With only the top 1000 (10%), 700 (7%) and 1400 (14%) similar samples, personalized random forest, k-nearest neighbor and logistic regression models reached the globally optimal performance with the area under the receiver-operating characteristic (ROC) curve of 0.90, 0.82 and 0.89, respectively.
Conclusions
The proposed patient similarity measurement was effective when developing personalized predictive models. The successful application of patient similarity in predicting a patient’s diabetes status provided useful references for diagnostic decision-making support by investigating the evidence on similar patients.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献