A collective tracking method for preliminary sperm analysis

Author:

Wei Sung-Yang,Chao Hsuan-Hao,Huang Han-Ping,Hsu Chang Francis,Li Sheng-Hsiang,Hsu Long

Abstract

Abstract Background Total motile sperm count (TMSC) and curvilinear velocity (VCL) are two important parameters in preliminary semen analysis for male infertility. Traditionally, both parameters are evaluated manually by embryologists or automatically using an expensive computer-assisted sperm analysis (CASA) instrument. The latter applies a point-tracking method using an image processing technique to detect, recognize and classify each of the target objects, individually, which is complicated. However, as semen is dense, manual counting is exhausting while CASA suffers from severe overlapping and heavy computation. Methods We proposed a simple frame-differencing method that tracks motile sperms collectively and treats their overlapping with a statistical occupation probability without heavy computation. The proposed method leads to an overall image of all of the differential footprint trajectories (DFTs) of all motile sperms and thus the overall area of the DFTs in a real-time manner. Accordingly, a theoretical DFT model was also developed to formulate the overall DFT area of a group of moving beads as a function of time as well as the total number and average speed of the beads. Then, using the least square fitting method, we obtained the optimal values of the TMSC and the average VCL that yielded the best fit for the theoretical DFT area to the measured DFT area. Results The proposed method was used to evaluate the TMSC and the VCL of 20 semen samples. The maximum TMSC evaluated using the method is more than 980 sperms per video frame. The Pearson correlation coefficient (PCC) between the two series of TMSC obtained using the method and the CASA instrument is 0.946. The PCC between the two series of VCL obtained using the method and CASA is 0.771. As a consequence, the proposed method is as accurate as the CASA method in TMSC and VCL evaluations. Conclusion In comparison with the individual point-tracking techniques, the collective DFT tracking method is relatively simple in computation without complicated image processing. Therefore, incorporating the proposed method into a cell phone equipped with a microscopic lens can facilitate the design of a simple sperm analyzer for clinical or household use without advance dilution.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3