Comparative study of optical coherence tomograph and histological images of eustachian tube nasopharyngeal region and adjacent structures in vivo and ex-vivo miniature pigs

Author:

Sun Xiao-Mei,Xiao Zhi-Wen,Luo Jia-Qi,Gu Qing-Yu,Zhang Hui-Qing,Li Bai-Ling,Zhuang Shi-Min,Zhang Guan-Ping

Abstract

Abstract Objectives Optical Coherence Tomograph (OCT) imaging technology can be used to examine, in vivo, the human ET. At present, it is impossible to achieve the OCT scanning vivo and ex vivo in the same individual human body, or study the consistency between OCT images and histological images of the eustachian tube nasopharyngeal region and adjacent structures. The aim of this study was to determine the consistency between OCT images and histological sections in vivo and ex vivo in miniature pigs. Methods OCT imaging was performed on five adult miniature pigs in vivo and ex vivo. The images of the eustachian tube OCT (ET-OCT), nasopharynx OCT (NP-OCT) and histological cross sections were further studied. Results All five miniature pigs achieved the OCT scan successfully, acquiring ET-OCT and NP-OCT images in vivo and ex vivo on both sides. The acquired ET OCT images closely matched the histological images, revealing details of the cartilage, submucosa, glands, and mucosa. The lower segment of the ET wall mucosa had an abundance of glands and submucosal tissues, with more low-signal areas appearing in the ex vivo images. The NP-OCT images of the nasopharynx matched the details of the mucosa and submucosal tissues. The ex-vivo OCT images showed thicker mucosa and more scattered slightly lower signal areas compared to the vivo OCT images. Conclusions ET-OCT images and NP-OCT images matched the histological structure of eustachian tube nasopharyngeal region structures in miniature pigs both in vivo and ex vivo. OCT images may be sensitive to changes in edema and ischemia status. There is a great potential for morphological assessment of inflammation, edema, injure, mucus gland status.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3