Abstract
Abstract
Purpose
This study proposed a novel Local Reference Semantic Code (LRSC) network for automatic breast ultrasound image classification with few labeled data.
Methods
In the proposed network, the local structure extractor is firstly developed to learn the local reference which describes common local characteristics of tumors. After that, a two-stage hierarchical encoder is developed to encode the local structures of lesion into the high-level semantic code. Based on the learned semantic code, the self-matching layer is proposed for the final classification.
Results
In the experiment, the proposed method outperformed traditional classification methods and AUC (Area Under Curve), ACC (Accuracy), Sen (Sensitivity), Spec (Specificity), PPV (Positive Predictive Values), and NPV(Negative Predictive Values) are 0.9540, 0.9776, 0.9629, 0.93, 0.9774 and 0.9090, respectively. In addition, the proposed method also improved matching speed.
Conclusions
LRSC-network is proposed for breast ultrasound images classification with few labeled data. In the proposed network, a two-stage hierarchical encoder is introduced to learn high-level semantic code. The learned code contains more effective high-level classification information and is simpler, leading to better generalization ability.
Funder
shandong provincial key research and development program
soft science program of shandong province
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献