A computational paradigm for real-time MEG neurofeedback for dynamic allocation of spatial attention

Author:

Rana Kunjan D.,Khan SherazORCID,Hämäläinen Matti S.,Vaina Lucia M.

Abstract

Abstract Background Neurofeedback aids volitional control of one’s own brain activity using non-invasive recordings of brain activity. The applications of neurofeedback include improvement of cognitive performance and treatment of various psychiatric and neurological disorders. During real-time magnetoencephalography (rt-MEG), sensor-level or source-localized brain activity is measured and transformed into a visual feedback cue to the subject. Recent real-time fMRI (rt-fMRI) neurofeedback studies have used pattern recognition techniques to decode and train a brain state to link brain activities and cognitive behaviors. Here, we utilize the real-time decoding technique similar to ones employed in rt-fMRI to analyze time-varying rt-MEG signals. Results We developed a novel rt-MEG method, state-based neurofeedback (sb-NFB), to decode a time-varying brain state, a state signal, from which timings are extracted for neurofeedback training. The approach is entirely data-driven: it uses sensor-level oscillatory activity to find relevant features that best separate the targeted brain states. In a psychophysical task of spatial attention switching, we trained five young, healthy subjects using the sb-NFB method to decrease the time necessary for switch spatial attention from one visual hemifield to the other (referred to as switch time). Training resulted in a decrease in switch time with training. We saw that the activity targeted by the training involved proportional changes in alpha and beta-band oscillations, in sensors at the occipital and parietal regions. We also found that the state signal that encodes whether subjects attend to the left or right visual field effectively switches consistently with the task. Conclusion We demonstrated the use of the sb-NFB method when the subject learns to increase the speed of shifting covert spatial attention from one visual field to the other. The sb-NFB method can target timing features that would otherwise also include extraneous features such as visual detection and motor response in a simple reaction time task.

Funder

National Science Foundation

National Institute of Biomedical Imaging and Bioengineering

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3