Voxel-wise body composition analysis using image registration of a three-slice CT imaging protocol: methodology and proof-of-concept studies

Author:

Ahmad Nouman,Dahlberg Hugo,Jönsson Hanna,Tarai Sambit,Guggilla Rama Krishna,Strand Robin,Lundström Elin,Bergström Göran,Ahlström Håkan,Kullberg Joel

Abstract

Abstract Background Computed tomography (CT) is an imaging modality commonly used for studies of internal body structures and very useful for detailed studies of body composition. The aim of this study was to develop and evaluate a fully automatic image registration framework for inter-subject CT slice registration. The aim was also to use the results, in a set of proof-of-concept studies, for voxel-wise statistical body composition analysis (Imiomics) of correlations between imaging and non-imaging data. Methods The current study utilized three single-slice CT images of the liver, abdomen, and thigh from two large cohort studies, SCAPIS and IGT. The image registration method developed and evaluated used both CT images together with image-derived tissue and organ segmentation masks. To evaluate the performance of the registration method, a set of baseline 3-single-slice CT images (from 2780 subjects including 8285 slices) from the SCAPIS and IGT cohorts were registered. Vector magnitude and intensity magnitude error indicating inverse consistency were used for evaluation. Image registration results were further used for voxel-wise analysis of associations between the CT images (as represented by tissue volume from Hounsfield unit and Jacobian determinant) and various explicit measurements of various tissues, fat depots, and organs collected in both cohort studies. Results Our findings demonstrated that the key organs and anatomical structures were registered appropriately. The evaluation parameters of inverse consistency, such as vector magnitude and intensity magnitude error, were on average less than 3 mm and 50 Hounsfield units. The registration followed by Imiomics analysis enabled the examination of associations between various explicit measurements (liver, spleen, abdominal muscle, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), thigh SAT, intermuscular adipose tissue (IMAT), and thigh muscle) and the voxel-wise image information. Conclusion The developed and evaluated framework allows accurate image registrations of the collected three single-slice CT images and enables detailed voxel-wise studies of associations between body composition and associated diseases and risk factors.

Funder

Heart and Lung foundation

Swedish Research Council

EXODIAB

VINNOVA

AIDA-SCAPIS innovation project grant

Uppsala University

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Bergström G, Berglund G, Blomberg A, Brandberg J, Engström G, Engvall J, Eriksson M, Faire U, Flinck A, Hansson MG, Hedblad B, Hjelmgren O, Janson C, Jernberg T, Johnsson Å, Johansson L, Lind L, Löfdahl C-G, Melander O, Östgren CJ, Persson A, Persson M, Sandström A, Schmidt C, Söderberg S, Sundström J, Toren K, Waldenström A, Wedel H, Vikgren J, Fagerberg B, Rosengren A. The Swedish CArdioPulmonary BioImage Study: objectives and design. J Intern Med. 2015;278:645–59. https://doi.org/10.1111/joim.12384.

2. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease: imaging methods for analyzing body composition. Ann NY Acad Sci. 2015;1353:41–59. https://doi.org/10.1111/nyas.12842.

3. Xu K, Khan MS, Li TZ, Gao R, Terry JG, Huo Y, Lasko TA, Carr JJ, Maldonado F, Landman BA, Sandler KL. AI body composition in lung cancer screening: added value beyond lung cancer detection. Radiology. 2023;308: e222937. https://doi.org/10.1148/radiol.222937.

4. Molnar D, Björnson E, Larsson M, Adiels M, Gummesson A, Bäckhed F, Hjelmgren O, Bergström G. Pre-diabetes is associated with attenuation rather than volume of epicardial adipose tissue on computed tomography. Sci Rep. 2023;13:1623. https://doi.org/10.1038/s41598-023-28679-w.

5. Al-Sharify ZT, Al-Sharify TA, Al-Sharify NT, Yahya naser H. A critical review on medical imaging techniques (CT and PET scans) in the medical field. IOP Conf Ser Mater Sci Eng. 2020;870:012043. https://doi.org/10.1088/1757-899X/870/1/012043.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3