Abstract
Abstract
Background
Invasion depth is an important index for staging and clinical treatment strategy of bladder cancer (BCa). The aim of this study was to investigate the feasibility of segmenting the BCa region from bladder wall region on MRI, and quantitatively measuring the invasion depth of the tumor mass in bladder lumen for further clinical decision-making. This retrospective study involved 20 eligible patients with postoperatively pathologically confirmed BCa. It was conducted in the following steps: (1) a total of 1159 features were extracted from each voxel of both the certain cancerous and wall tissues with the T2-weighted (T2W) MRI data; (2) the support vector machine (SVM)-based recursive feature elimination (RFE) method was implemented to first select an optimal feature subset, and then develop the classification model for the precise separation of the cancerous regions; (3) after excluding the cancerous region from the bladder wall, the three-dimensional bladder wall thickness (BWT) was calculated using Laplacian method, and the invasion depth of BCa was eventually defined by the subtraction of the mean BWT excluding the cancerous region and the minimum BWT of the cancerous region.
Results
The segmented results showed a promising accuracy, with the mean Dice similarity coefficient of 0.921. The “soft boundary” defined by the voxels with the probabilities between 0.1 and 0.9 could demonstrate the overlapped region of cancerous and wall tissues. The invasion depth calculated from proposed segmentation method was compared with that from manual segmentation, with a mean difference of 0.277 mm.
Conclusion
The proposed strategy could accurately segment the BCa region, and, as the first attempt, realize the quantitative measurement of BCa invasion depth.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference35 articles.
1. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96–108.
2. Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C. Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer. 2015;15(1):42–54.
3. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022.
4. McKiernan J, Asafu-Adjei D. Bridging the gender gap: Bladder cancer is more deadly in women than in men That needs to change. Nature. 2017;S39:1–2.
5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献