HM_ADET: a hybrid model for automatic detection of eyelid tumors based on photographic images

Author:

Jiang Jiewei,Liu Haiyang,He Lang,Pei Mengjie,Lin Tongtong,Yang Hailong,Yang Junhua,Gong Jiamin,Wei Xumeng,Zhu Mingmin,Wu Guohai,Li Zhongwen

Abstract

Abstract Background The accurate detection of eyelid tumors is essential for effective treatment, but it can be challenging due to small and unevenly distributed lesions surrounded by irrelevant noise. Moreover, early symptoms of eyelid tumors are atypical, and some categories of eyelid tumors exhibit similar color and texture features, making it difficult to distinguish between benign and malignant eyelid tumors, particularly for ophthalmologists with limited clinical experience. Methods We propose a hybrid model, HM_ADET, for automatic detection of eyelid tumors, including YOLOv7_CNFG to locate eyelid tumors and vision transformer (ViT) to classify benign and malignant eyelid tumors. First, the ConvNeXt module with an inverted bottleneck layer in the backbone of YOLOv7_CNFG is employed to prevent information loss of small eyelid tumors. Then, the flexible rectified linear unit (FReLU) is applied to capture multi-scale features such as texture, edge, and shape, thereby improving the localization accuracy of eyelid tumors. In addition, considering the geometric center and area difference between the predicted box (PB) and the ground truth box (GT), the GIoU_loss was utilized to handle cases of eyelid tumors with varying shapes and irregular boundaries. Finally, the multi-head attention (MHA) module is applied in ViT to extract discriminative features of eyelid tumors for benign and malignant classification. Results Experimental results demonstrate that the HM_ADET model achieves excellent performance in the detection of eyelid tumors. In specific, YOLOv7_CNFG outperforms YOLOv7, with AP increasing from 0.763 to 0.893 on the internal test set and from 0.647 to 0.765 on the external test set. ViT achieves AUCs of 0.945 (95% CI 0.894-0.981) and 0.915 (95% CI 0.860-0.955) for the classification of benign and malignant tumors on the internal and external test sets, respectively. Conclusions Our study provides a promising strategy for the automatic diagnosis of eyelid tumors, which could potentially improve patient outcomes and reduce healthcare costs.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Postgraduate Innovation Fund of Xi'an University of Posts and Telecommunications

Humanities and Social Sciences Program of the Ministry of Education

Shaanxi Provincial Social Science Foundation

Natural Science Foundation of Zhejiang Province

Medical Health Science and Technology Project of Zhejiang Province

Natural Science Foundation of Ningbo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3