ECG signal feature extraction trends in methods and applications

Author:

Singh Anupreet Kaur,Krishnan Sridhar

Abstract

AbstractSignal analysis is a domain which is an amalgamation of different processes coming together to form robust pipelines for the automation of data analysis. When applied to the medical world, physiological signals are used. It is becoming increasingly common in today’s day and age to be working with very large datasets, on the scale of having thousands of features. This is largely due to the fact that the acquisition of biomedical signals can be taken over multi-hour timeframes, which is another challenge to solve in and of itself. This paper will focus on the electrocardiogram (ECG) signal specifically, and common feature extraction techniques used for digital health and artificial intelligence (AI) applications. Feature extraction is a vital step of biomedical signal analysis. The basic goal of feature extraction is for signal dimensionality reduction and data compaction. In simple terms, this would allow one to represent data with a smaller subset of features; these features could then later be leveraged to be used more efficiently for machine learning and deep learning models for applications, such as classification, detection, and automated applications. In addition, the redundant data in the overall dataset is filtered out as the data is reduced during feature extraction. In this review, we cover ECG signal processing and feature extraction in the time domain, frequency domain, time–frequency domain, decomposition, and sparse domain. We also provide pseudocode for the methods discussed so that they can be replicated by practitioners and researchers in their specific areas of biomedical work. Furthermore, we discuss deep features, and machine learning integration, to complete the overall pipeline design for signal analysis. Finally, we discuss future work that can be innovated upon in the feature extraction domain for ECG signal analysis.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference33 articles.

1. Sattar Y, Chhabra L. Electrocardiogram. Treasure Island (FL): StatPearls Publishing; 2022.

2. Subasi A. Feature extraction and dimension reduction in Practical guide for biomedical signals analysis using machine learning techniques. Amsterdam: Elsevier; 2019. p. 193–275.

3. Krishnan S. Biomedical signal analysis for connected healthcare. Cambridge: Academic Press; 2021.

4. Krishnan S, Athavale Y. Trends in biomedical signal feature extraction in biomedical signal processing and control. Amsterdam: Elsevier; 2018. p. 41–63.

5. Prahallad K. Feature extraction in time and frequency domain. Internet Archive. 2011. https://archive.org/details/FeatureExtractionInTimeAndFrequencyDomain. Accessed 16 May 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3