Measures of overnight oxygen saturation to characterize sleep apnea severity and predict postoperative respiratory depression

Author:

Assadi Atousa,Chung Frances,Yadollahi Azadeh

Abstract

Abstract Background Sleep apnea syndrome, characterized by recurrent cessation (apnea) or reduction (hypopnea) of breathing during sleep, is a major risk factor for postoperative respiratory depression. Challenges in sleep apnea assessment have led to the proposal of alternative metrics derived from oxyhemoglobin saturation (SpO2), such as oxygen desaturation index (ODI) and percentage of cumulative sleep time spent with SpO2 below 90% (CT90), as predictors of postoperative respiratory depression. However, their performance has been limited with area under the curve of 0.60 for ODI and 0.59 for CT90. Our objective was to propose novel features from preoperative overnight SpO2 which are correlated with sleep apnea severity and predictive of postoperative respiratory depression. Methods Preoperative SpO2 signals from 235 surgical patients were retrospectively analyzed to derive seven features to characterize the sleep apnea severity. The features included entropy and standard deviation of SpO2 signal; below average burden characterizing the area under the average SpO2; average, standard deviation, and entropy of desaturation burdens; and overall nocturnal desaturation burden. The association between the extracted features and sleep apnea severity was assessed using Pearson correlation analysis. Logistic regression was employed to evaluate the predictive performance of the features in identifying postoperative respiratory depression. Results Our findings indicated a similar performance of the proposed features to the conventional apnea–hypopnea index (AHI) for assessing sleep apnea severity, with average area under the curve ranging from 0.77 to 0.81. Notably, entropy and standard deviation of overnight SpO2 signal and below average burden showed comparable predictive capability to AHI but with minimal computational requirements and individuals’ burden, making them promising for screening purposes. Our sex-based analysis revealed that compared to entropy and standard deviation, below average burden exhibited higher sensitivity in detecting respiratory depression in women than men. Conclusion This study underscores the potential of preoperative SpO2 features as alternative metrics to AHI in predicting postoperative respiratory.

Funder

Natural Sciences and Engineering Research Council of Canada

New Frontiers in Research Funds

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3