A multi-Kalman filter-based approach for decoding arm kinematics from EMG recordings

Author:

ElMohandes Hend,Eldawlatly Seif,Audí Josep Marcel Cardona,Ruff Roman,Hoffmann Klaus-Peter

Abstract

Abstract Background Remarkable work has been recently introduced to enhance the usage of Electromyography (EMG) signals in operating prosthetic arms. Despite the rapid advancements in this field, providing a reliable, naturalistic myoelectric prosthesis remains a significant challenge. Other challenges include the limited number of allowed movements, lack of simultaneous, continuous control and the high computational power that could be needed for accurate decoding. In this study, we propose an EMG-based multi-Kalman filter approach to decode arm kinematics; specifically, the elbow angle (θ), wrist joint horizontal (X) and vertical (Y) positions in a continuous and simultaneous manner. Results Ten subjects were examined from which we recorded arm kinematics and EMG signals of the biceps, triceps, lateral and anterior deltoid muscles corresponding to a randomized set of movements. The performance of the proposed decoder is assessed using the correlation coefficient (CC) and the normalized root-mean-square error (NRMSE) computed between the actual and the decoded kinematic. Results demonstrate that when training and testing the decoder using same-subject data, an average CC of 0.68 ± 0.1, 0.67 ± 0.12 and 0.64 ± 0.11, and average NRMSE of 0.21 ± 0.06, 0.18 ± 0.03 and 0.24 ± 0.07 were achieved for θ, X, and Y, respectively. When training the decoder using the data of one subject and decoding the data of other subjects, an average CC of 0.61 ± 0.19, 0.61 ± 0.16 and 0.48 ± 0.17, and an average NRMSE of 0.23 ± 0.07, 0.2 ± 0.05 and 0.38 ± 0.15 were achieved for θ, X, and Y, respectively. Conclusions These results suggest the efficacy of the proposed approach and indicates the possibility of obtaining a subject-independent decoder.

Funder

Deutscher Akademischer Austausch Dienst Kairo

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3