Author:
Lee Chu-Hsuan,Tsai Meng-Han,Kang Shih-Chung
Abstract
Abstract
Background
Pipeline maintenance is becoming an important issue in modern construction and building information model (BIM) research. An understanding of pipeline accessibility considerations in terms of operation and maintenance is essential for planning and management. Previous studies have highlighted the complexity of multi-pipes including mechanical, electrical and plumbing (MEP) pipelines and the importance of information visualization, but few have proposed a way to consider accessibility problems during operation and maintenance.
Methods
Therefore, this study develops a systematic method to evaluate accessibility with respect to pipeline maintenance. We first divided pipeline accessibility into three categories: (1) visual accessibility—the visibility for an inspector to view; (2) approachable accessibility—the difficulty for an inspector to approach; and (3) operational accessibility—the pipeline that can be operated by the inspectors. We created mathematical models and discussed the ergonomic details about each category. We then developed a user interface, VAO Checker, in which V, A and O stand for visual, approachable and operational respectively, to display visual information about pipeline accessibility. Through instantaneous analysis, the system visualizes the accessibility of the pipelines. We visually represent the intersection and union of these three categories to illustrate the varying accessibility of pipe elements.
Results
A usability test was conducted to validate the system's effectiveness. The results of the usability analysis show that users have higher correctness when using VAO Checker than 2D plan drawing and 3D model, and they evaluate the performance of this tool better than 2D plan drawing.
Conclusion
Pipeline designers can benefit by using this tool to sketch a suitable traffic flow for engineers to investigate. Furthermore, the substantial amount of information saved in the layout database could be referenced for future optimization.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modelling and Simulation
Reference33 articles.
1. Biehl WH, Inman JA: Energy optimization for water systems. Journal of American Water Works Association 2010, 102: 6.
2. Calixto EES, Bordeira PG, Calazans HT, Tavares CAC, Rodriguez MTD: Plant design project automation using an automatic pipe routing routine. Computer Aided Chemical Engineering 2009, 27: 807–812. doi: 10.1016/S1570–7946(09)70355–4 doi: 10.1016/S1570-7946(09)70355-4 10.1016/S1570-7946(09)70355-4
3. Chang HS, Kang SC, Chen PH: Systematic procedure of determining an ideal color scheme on 4D models. Advanced Engineering Informatics 2009, 23(4):463–473. doi: 10.1016/j.aei.2009.05.002 doi: 10.1016/j.aei.2009.05.002 10.1016/j.aei.2009.05.002
4. Chen YH, Tsai MH, Kang SC, Liu CW: Selection and evaluation of color scheme for 4D construction models. Journal of Information Technology in Construction 2013, 18: 1–19.
5. Deliang L, Huibiao L: Interfere-check applying to 3D automatic pipe route arrangement. Proceedings of International Conference on Computational Intelligence and Software Engineering, Wuhan 2009, 11–13. doi:10.1109/cise.2009.5365920 doi:10.1109/cise.2009.5365920
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献