A step-by-step construction site photography procedure to enhance the efficiency of as-built data visualization: a case study
-
Published:2015-02-06
Issue:1
Volume:3
Page:
-
ISSN:2213-7459
-
Container-title:Visualization in Engineering
-
language:en
-
Short-container-title:Vis. in Eng.
Author:
Jadidi Hossein,Ravanshadnia Mehdi,Hosseinalipour Mujtaba,Rahmani Fatemeh
Abstract
Abstract
Introduction
Visualization of as-built data may change the future of construction project management to a more efficient area of knowledge if appropriate and easy photography and reconstruction tools would be developed and used by practitioners. Most of the current reconstructed 3D point cloud models use unordered photograph collections to generate 4D as-built models. Some of these photographs are not used in the final model mostly because of either a possible overlap with other photos or some faults in photography procedure. Computation time increases exponentially as the number of photos in a photo collection increases. Therefore, the unstructured processes may reduce the performance of a point-cloud model representation. This work shows how the available application of unordered photograph collections are regularly inefficient by measuring the performance of some important criteria, such as the registration success score and the computation time.
Case description
The case study is the construction of a gas compressor station. Such industrial projects involve several building and work areas (e.g., substation, control building, and piping area). The construction site covers approximately 20 hectares. The case study was conducted in two stages. In the first stage, preexisting images have been used for image based modelling (IBM). In the second stage, images captured based on a step-by-step photography procedure (SPP) have been used for IBM.
Discussion and evaluation
IBM performance in the first stage of the case study has been compared with the performance of the second stage by comparing the registration success scores. The IBM in the first stage of the case study results in sparse models, which hardly show the geometry of construction scenes. By contrast, capturing images based on the SPP in the second stage of the case study significantly changed the performance of IBM and increased the registration success score.
Conclusion
This study provides an easy applicable on-site photography procedure. By adopting the proposed approach and by training the photographers, the model would be more desirable for application in more construction projects. The application of the SPP in the case study shows a significant improvement in the final reconstructed 3D point cloud model and as-built data visualization criteria.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modeling and Simulation
Reference23 articles.
1. Akinci, B, Kiziltas, S, Ergen, E, Karaesmen, IZ, Keceli, F (2006). Modeling and analyzing the impact of technology on data capture and transfer processes at construction sites: a case study. Journal of construction engineering and management, 132(11), 1148–1157. 2. Bae, H, Golparvar-Fard, M, White, J (2013). High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (aec/fm) applications. Visualization in Engineering, 1(1), 1–13. 3. FIDIC. (2006). Conditions of contract for construction, for building and engineering works designed by the employer, multilateral development bank harmonized edition: Fédération Internationale des Ingénieurs-Conseils (FIDIC). 4. Ducke, B, Score, D, Reeves, J (2011). Multiview 3d reconstruction of the archaeological site at weymouth from image series. Computers & Graphics, 2, 375–382. 5. Golparvar-Fard, M, Peña-Mora, F, Savarese, S (2009a). D4ar–a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. Journal of information technology in construction, 14, 129–153.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|