A Facile machine learning multi-classification model for Streptococcus agalactiae clonal complexes

Author:

Liu Jingxian,Zhao Jing,Huang Chencui,Xu Jingxu,Liu Wei,Yu Jiajia,Guan Hongyan,Liu Ying,Shen Lisong

Abstract

Abstract Background The clinical significance of group B streptococcus (GBS) was different among different clonal complexes (CCs), accurate strain typing of GBS would facilitate clinical prognostic evaluation, epidemiological investigation and infection control. The aim of this study was to construct a practical and facile CCs prediction model for S. agalactiae. Methods A total of 325 non-duplicated GBS strains were collected from clinical samples in Xinhua Hospital, Shanghai, China. Multilocus sequence typing (MLST) method was used for molecular classification, the results were analyzed to derive CCs by Bionumeric 8.0 software. Antibiotic susceptibility test was performed using Vitek-2 Compact system combined with K-B method. Multiplex PCR method was used for serotype identification. A total of 45 virulence genes associated with adhesion, invasion, immune evasion were detected by PCR method and electrophoresis. Three types of features, including antibiotic susceptibility (A), serotypes (S) and virulence genes (V) tests, and XGBoost algorithm was established to develop multi-class CCs identification models. The performance of proposed models was evaluated by the receiver operating characteristic curve (ROC). Results The 325 GBS were divided into 47 STs, and then calculated into 7 major CCs, including CC1, CC10, CC12, CC17, CC19, CC23, CC24. A total of 18 features in three kinds of tests (A, S, V) were significantly different from each CC. The model based on all the features (S&A&V) performed best with AUC 0.9536. The model based on serotype and antibiotic resistance (S&A) only enrolled 5 weighed features, performed well in predicting CCs with mean AUC 0.9212, and had no statistical difference in predicting CC10, CC12, CC17, CC19, CC23 and CC24 when compared with S&A&V model (all p > 0.05). Conclusions The S&A model requires least parameters while maintaining a high accuracy and predictive power of CCs prediction. The established model could be used as a promising tool to classify the GBS molecular types, and suggests a substantive improvement in clinical application and epidemiology surveillance in GBS phenotyping.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Microbiology (medical),General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3