Author:
Qin Yingcheng,Peng Yuan,Duan Xiaonv,Song Zhenli,Huang Rong,Rui Yongyu
Abstract
Abstract
Background
Carbapenemase-producing makes a great contribution to carbapenem resistance in Gram-negative bacilli. BlaAFM-1 gene was first discovered by us in Alcaligenes faecalis AN70 strain isolated in Guangzhou of China and, was submitted to NCBI on 16 November 2018.
Methods
Antimicrobial susceptibility testing was performed by broth microdilution assay using BD Phoenix 100. The phylogenetic tree of AFM and other B1 metallo-β-lactamases was visualized by MEGA7.0. Whole-genome sequencing technology was used to sequence carbapenem-resistant strains including the blaAFM-1 gene. Cloning and expressing of blaAFM-1 were designed to verify the function of AFM-1 to hydrolyze carbapenems and common β-lactamase substrates. Carba NP and Etest experiments were conducted to evaluate the activity of carbapenemase. Homology modeling was applied to predict the spatial structure of AFM-1. A conjugation assay was performed to test the ability of horizontal transfer of AFM-1 enzyme. The genetic context of blaAFM-1 was performed by Blast alignment.
Results
Alcaligenes faecalis strain AN70, Comamonas testosteroni strain NFYY023, Bordetella trematum strain E202, and Stenotrophomonas maltophilia strain NCTC10498 were identified as carrying the blaAFM-1 gene. All of these four strains were carbapenem-resistant strains. Phylogenetic analysis revealed that AFM-1 shares little nucleotide and amino acid identity with other class B carbapenemases (the highest identity (86%) with NDM-1 at the amino acid sequence level). The spatial structure of the AFM-1 enzyme was predicted to be αβ/βα sandwich structure, with two zinc atoms at its active site structure. Cloning and expressing of blaAFM-1 verified AFM-1 could hydrolyze carbapenems and common β-lactamase substrates. Carba NP test presented that the AFM-1 enzyme possesses carbapenemase activity. The successful transfer of pAN70-1(plasmid of AN70) to E.coli J53 suggested that the blaAFM-1 gene could be disseminated by the plasmid. The genetic context of blaAFM indicated that the downstream of the blaAFM gene was always adjacent to trpF and bleMBL. Comparative genome analysis revealed that blaAFM appeared to have been mobilized by an ISCR27-related mediated event.
Conclusions
The blaAFM-1 gene is derived from chromosome and plasmid, and the blaAFM-1 gene derived from the pAN70-1 plasmid can transfer carbapenem resistance to susceptible strains through horizontal transfer. Several blaAFM-1-positive species have been isolated from feces in Guangzhou, China.
Funder
Natural Science Foundation of Guangdong Province
Guangdong Province Science and Technology Project
Guangzhou City Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Microbiology (medical),General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献