Mathematical pharmacodynamic modeling for antimicrobial assessment of ceftazidime/colistin versus gentamicin/meropenem combinations against carbapenem-resistant Pseudomonas aeruginosa biofilm
-
Published:2023-07-02
Issue:1
Volume:22
Page:
-
ISSN:1476-0711
-
Container-title:Annals of Clinical Microbiology and Antimicrobials
-
language:en
-
Short-container-title:Ann Clin Microbiol Antimicrob
Author:
Badawy Mona Shaban E. M., Elkhatib Walid F.ORCID, Shebl Rania I.ORCID
Abstract
Abstract
Background
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) represents an escalating healthcare hazard with high mortality worldwide, especially in presence of biofilm. The current study aimed to evaluate the anti-biofilm potentials of ceftazidime, colistin, gentamicin, and meropenem alone and in combinations against biofilm-forming CRPA.
Methods
Biofilm killing and checkerboard assay were performed to detect the effectiveness of combined antibiotics against biofilms and planktonic cells, respectively. The bacterial bioburden retrieved from the established biofilms following treatment with combined antibiotics was utilized to construct a three-dimensional response surface plot. A sigmoidal maximum effect model was applied to determine the pharmacodynamic parameters (maximal effect, median effective concentration, and Hill factor) of each antibiotic to create a mathematical three-dimensional response surface plot.
Results
Data revealed statistically significant (p < 0.05) superior anti-biofilm potential in the case of colistin followed by a lower effect in the case of gentamicin and meropenem, while ceftazidime exhibited the least anti-biofilm activity. The fractional inhibitory concentration index (FICI ≤ 0.5) indicated synergism following treatment with the combined antibiotics. An elevated anti-biofilm activity was recorded in the case of gentamicin/meropenem compared to ceftazidime/colistin. Synergistic anti-biofilm potentials were also detected via the simulated pharmacodynamic modeling, with higher anti-biofilm activity in the case of the in vitro observation compared to the simulated anti-biofilm profile.
Conclusions
The present study highlighted the synergistic potentials of the tested antibiotic combinations against P. aeruginosa biofilms and the importance of the mathematical pharmacodynamic modeling in investigating the efficacy of antibiotics in combination as an effective strategy for successful antibiotic therapy to tackle the extensively growing resistance to the currently available antibiotics.
Funder
Ahram Canadian University
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Microbiology (medical),General Medicine
Reference36 articles.
1. Hu Y-Y, Cao J-M, Yang Q, Chen S, Lv H-Y, Zhou H-W, Wu Z, Zhang R. Risk factors for carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg Infect Dis. 2019;25(10):1861. 2. Ramphal R. Infections due to pseudomonas, burkholderia, and stenotrophomonas species. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s principles of internal medicine, 20e. McGraw-Hill Education: New York, NY; 2018. 3. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, Viscoli C, Giamarellou H, Karaiskos I. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti‐infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacother J Human Pharmacol Drug Ther. 2019;39(1):10–39. 4. Memar MY, Adibkia K, Farajnia S, Kafil HS, Khalili Y, Azargun R, Ghotaslou R. In-vitro effect of imipenem, fosfomycin, colistin, and gentamicin combination against carbapenem-resistant and biofilm-forming Pseudomonas aeruginosa isolated from burn patients. Iran J Pharm Res. 2021;20(2):286. 5. Ahmed GF, Elkhatib WF, Noreddin AM. Inhibition of Pseudomonas aeruginosa PAO1 adhesion to and invasion of A549 lung epithelial cells by natural extracts. J Infect Public Health. 2014;7(5):436–44.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|