Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy

Author:

Loconsole Daniela,Accogli Marisa,De Robertis Anna Lisa,Capozzi Loredana,Bianco Angelica,Morea Anna,Mallamaci Rosanna,Quarto Michele,Parisi Antonio,Chironna MariaORCID

Abstract

Abstract Background Carbapenem-resistant Klebsiella pneumoniae (CR-KP) is an urgent public health issue in Italy. This pattern of resistance is due mainly to dissemination of carbapenemase genes. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae (CR-KP) strains was performed over a three-year period. In-depth analysis was performed on a subset of emerging CR-KP ST101 and ST307 clones. Methods A prospective study was performed on 691 patients with CR-KP bloodstream infections hospitalized in 19 hospitals located in three large provinces in Southern Italy. Carbapenemase genes were identified via genotyping methods. Multi-locus sequence typing (MLST) and Whole Genome Sequencing (WGS) were carried out on ST101 and ST307 isolates. Results Among the CR-KP isolates, blaKPC was found in 95.6%, blaVIM was found in 3.5%, blaNDM was found in 0.1% and blaOXA-48 was found in 0.1%. The blaKPC-3 variant was identified in all 104 characterized KPC-KP isolates. MLST of 231 representative isolates revealed ST512 in 45.5%, ST101 in 20.3% and ST307 in 18.2% of the isolates. cgMLST of ST307 and ST101 isolates revealed presence of more than one beta-lactam resistance gene. Amino acid substitution in the chromosomal colistin-resistance gene pmrB was found in two ST101 isolates. Conclusions ST512 is widespread in Southern Italy, but ST101 and ST307 are emerging since they were found in a significant proportion of cases. Aggressive infection control measures and a continuous monitoring of these high-risk clones are necessary to avoid rapid spread of CR-KP, especially in hospital settings.

Funder

This study was supported by the Apulian Regional Observatory for Epidemiology

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Microbiology (medical),General Medicine

Reference44 articles.

1. World Health Organization. “WHO publishes list of bacteria for which new antibiotics are urgently needed”; 2017. https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 21 Dec 2019.

2. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–50.

3. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem- resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972–6.

4. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2017. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC, 15 Nov 2018. https://ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2017. Accessed 21 Dec 2019.

5. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2009. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2011. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf. Accessed 21 Dec 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3